Lyapunov Instability and Collective Tangent Space Dynamics of Fluids

نویسندگان

  • Harald A. Posch
  • Ch. Forster
چکیده

The phase space trajectories of many body systems charateristic of isimple fluids are highly unstable. We quantify this instability by a set of Lyapunov exponents, which are the rates of exponential divergence, or convergence, of infinitesimal perturbations along selected directions in phase space. It is demonstrated that the perturbation associated with the maximum Lyapunov exponent is localized in space. This localization persists in the large-particle limit, regardless of the interaction potential. The perturbations belonging to the smallest positive exponents, however, are sensitive to the potential. For hard particles they form well-defined long-wavelength modes. The modes could not be observed for systems interacting with a soft potential due to surprisingly large fluctuations of the local exponents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 3 O ct 2 00 2 Lyapunov instability and collective tangent space dynamics of fluids

The phase space trajectories of many body systems charateristic of simple fluids are highly unstable. We quantify this instability by a set of Lyapunov exponents, which are the rates of exponential divergence, or convergence, of initial (infinitesimal) perturbations along carefully selected directions in phase space. It is demonstrated that the perturbation associated with the maximum Lyapunov ...

متن کامل

Localized and Delocalized Modes in the Tangent–Space Dynamics of Planar Hard Dumbbell Fluids

Systems of hard dumbbells are, arguably, the simplest model for a molecular fluid composed of linear molecules. We study here the Lyapunov instability for two-dimensional systems containing qualitatively different degrees of freedom, translation and rotation. We characterize this instability by the Lyapunov spectrum, which measures the rate of exponential divergence, or convergence, of infinite...

متن کامل

Lyapunov instability of rigid diatomic molecules in three dimensions.

We study the Lyapunov instability of a three-dimensional fluid composed of rigid diatomic molecules by molecular dynamics simulation. We use center-of-mass coordinates and angular variables for the configurational space variables. The spectra of Lyapunov exponents are obtained for 32 rigid diatomic molecules interacting through the Weeks-Chandler-Andersen potential for various bond lengths and ...

متن کامل

Remarks on the mean field dynamics of networks of chaotic elements

Fluctuations of the mean field of a globally coupled dynamical systems are discussed. The origin of hidden coherence is related with the instability of the fixed point solution of the self-consistent Perron-Frobenius equation. Collective dynamics in globally coupled tent maps are re-examined, both with the help of direct simulation and the Perron-Frobenius equation. Collective chaos in a single...

متن کامل

Covariant Lyapunov vectors for rigid disk systems

We carry out extensive computer simulations to study the Lyapunov instability of a two-dimensional hard-disk system in a rectangular box with periodic boundary conditions. The system is large enough to allow the formation of Lyapunov modes parallel to the x-axis of the box. The Oseledec splitting into covariant subspaces of the tangent space is considered by computing the full set of covariant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002